Rieth József: Anyagvilág - Háttérismeret

Plazma

TartalomjegyzékhezVilágképem <    (Planck-időszak, Kvark-időszak, Hadron-időszak)     

A fizikában és a kémiában a plazma ionizált gázt jelent, illetve a negyedik halmazállapotot a szilárd, a folyékony és a gáznemű mellett. Az ionizált itt azt jelenti, hogy az anyagot alkotó atomokról egy vagy több elektron leszakad, és így a plazma ionok és szabad elektronok keveréke lesz. Mivel az elektronok már nem lesznek az atomokhoz kötve, hanem a plazmában szabadon mozoghatnak, a plazma elektromosan vezetővé válik és az elektromágneses mezőkkel kölcsönhatásba lép.

A látható Világegyetem anyagának 99%-a ebben a halmazállapotban van. A plazma állapot csak igen magas hőmérsékleten, tízezer kelvin körül kezd kialakulni, mert csak itt áll rendelkezésre az elektronok leszakításához szükséges energia.

A plazma kinetikus hőmérséklete és sűrűsége széles tartományban változhat (104 – 109 K; 105 – 1033 részecske/m³). Elektromos és mágneses térrel a plazma tulajdonságai térben és időben szabályozhatók. Mivel a plazma minden esetben jóval forróbb a szilárd anyagok által kezelhető kb. 3000 foknál, ezért kezelése mágneses és ritkábban elektromos térrel történik. A plazma, magas hőmérséklete miatt, intenzív elektromágneses sugárzó is, magyarul rendkívül sok fényt bocsát ki. Ennek spektruma azonban némileg eltér a feketetest-sugárzástól. Ezzel a sugárzással gyorsan energiát veszít, ezáltal a plazmaállapot rövidesen megszűnik. A sugárzási veszteséget jelentősen csökkenteni lehet, ha azt a plazmát tartalmazó tartály belső falát alkotó tükrös felületek visszasugározzák.

A plazmát alkotó elektronok és ionok nincsenek egymáshoz kötve, és különböző töltésük és tömegük miatt elektromos és mágneses tér hatására máshogy viselkednek, ami további elektromos és mágneses tér forrása. Emiatt a plazma viselkedése igen bonyolult, fizikai tulajdonságait a magnetohidrodinamika írja le. Napjainkban széles körű plazmakutatás folyik az univerzum mélyebb megismerésére, új gyártási eljárások és műszaki termékek (fényforrások, plazma-kijelzők) kialakítására és az emberiség számára oly fontos kontrollált magfúziós energiatermelés megvalósítására.

Plazma a leggyakoribb anyag a világegyetemben, messzire elnyúló szakaszokban van jelen a világűrben. A csillagok anyaga plazma, és a csillagközi térben is sok plazma található, de mivel a csillagközi tér nagyon tág, a plazmák pedig próbálják kitölteni a rendelkezésre álló helyet - akárcsak a gázok - sűrűségük nagyon kicsi lehet, ezért az ilyen fajta plazmát "híg plazmának" is szokták nevezni. Mivel a csillagok is plazmaállapotban vannak, lövellhetnek ki magukból plazmaadagokat. Ezt nevezik napszélnek.

A mi Naprendszerünkben a Nap folyamatosan napszélt lövell magából. A napszél elsodródik a világűrben és természetesen hozzánk is elér. Mivel Földünk körül mágneses mező van, a plazmát pedig a mágneses tér befolyásolja, a napszélt az északi és a déli pólus magához vonzza. Ezeken a részeken alakul ki a napszél ionizáló hatására a sarki fény.

Plazmajelenség a Földön természetes módon keletkezhet gyors égéskor is, amit lángnak vagy tűznek mondunk, de villámláskor is plazma keletkezik.

TartalomjegyzékhezVilágképem <  Planck-időszak     

---------------------

http://hu.wikipedia.org/wiki/Plazma