Rieth József: Anyagvilág - Háttéranyag

Kvantumelektrodinamika

Tartalomjegyzékhez Világképem <  Alfapont     

A kvantumelektrodinamika (QED) az elektrodinamika, azaz a részecskék elektromágneses kölcsönhatásának kvantumelmélete. Ez az első, a fizikai valóságot sikeresen leíró kerek kvantumtérelmélet, ami Feynman, Dyson, Tomonaga és Schwinger munkássága alapján nyerte el végső formáját az 1940-es évektől kezdődően, folytatódva az 1950-es években, s amiért 1965-ben Feynman, Tomonaga és Schwinger megosztott fizikai Nobel-díjat kapott.

Az elmélet felépítéséhez a kvantumelmélet keretei között a hatáselvet alkalmazzuk, azaz a klasszikus elektrodinamika által szolgáltatott energiakifejezésekből felépítjük a Lagrange-függvényt, amit a klasszikus mértékszabadság kvantumelméleti alkalmazásával teszünk teljessé.

Kvantummező elmélet

A kvantummező (más megnevezéssel kvantumtér) ötlete már 1927-ben felmerült, az első igazi kvantum-mező elméletet azonban, nevezetesen a kvantum-elektrodinamikát csak az 1940-es évek folyamán dolgozták ki Richard P. Feynman és munkatársai. Ennek alapgondolata az volt, hogy ha a fotonok elektromágneses hullámcsomagok, akkor – Planck eredeti üregmodelljének analógiájára – elvileg lehetséges lehet, hogy az ide-oda röpködő rengeteg ilyen hullámcsomag elektromos és mágneses erőtere úgy adódjon össze, hogy abból elektrosztatikus erőtér alakuljon ki. Ezen elmélet szerint tehát két elektromos töltésű részecske közötti vonzást vagy taszítást úgy (is) lehet értelmezni, hogy a részecskék kölcsönösen fotonokat lövöldöznek egymásra és ez idézi elő közöttük az erőhatást. Elektronok esetében azonban a fotonok kibocsátásához akkora energia kellene, amekkorával az elektron nem rendelkezik. A probléma megoldását itt is Heisenberg határozatlansági tétele kínálja, ugyanis az energia és az idő komplementer mennyiségek, és ezért nagyon rövid időtartamhoz jelentős mértékű energiaszint ingadozás tartozik. Ha tehát az energiaszint pozitív kilengésekor az elektron kilök egy olyan fotont, amelyet a megengedett rövid időn belül vissza is kap, akkor ez az effektus működhet. Ez az elmélet voltaképpen azt jelenti, hogy az elektromágneses erőtér is kvantált, és kvantumjai a fotonok. A kvantum-mező elméletet később fokozatosan kiterjesztették más típusú erőterekre is, főleg az atommagon belüli struktúra kutatása érdekében. Eszerint pl. az atommagot alkotó nukleonokat összetartó erős kölcsönhatást is részecskék, un. mezonok közvetítik.

Töltött részecske mozgásegyenlete

Nemrelativisztikus egyenlet (Schrödinger-egyenlet)

Töltés nemrelativisztikus mozgását elektromágneses térben a kvantummechanika első általános egyenlete, a Schrödinger-egyenlet írja le. A szabad tömegpont egyenletét ki kell egészítenünk egy kölcsönhatási taggal, ami például elektromos tér esetén az elektromos potenciállal írható le. Hidrogénatom esetén koordinátareprezentációban az elektron hullámfüggvénye, egy hely- és egy spinfüggő rész szorzataként írható fel nemrelativisztikus esetben. Általában itt a hullámfüggvény két része egymástól függetlenül kezelhető. A spinhullámfüggvény egy kétdimenziós általában konstans spinor.

Relativisztikus egyenlet (Dirac-egyenlet)

A fizikában a Dirac-egyenlet a relativisztikus kvantummechanika hullámegyenlete, amit Paul Dirac brit fizikus 1928-ban alkotott meg. Az egyenlet az ½ spinű részecskék (mint az elektron) helyes, relativisztikus (a speciális relativitáselmélettel konzisztens) kvantummechanikai mozgásegyenlete. A Dirac-egyenlet mindenféle bővítés nélkül (mint például a Pauli–Scrödinger-egyenlet) magába foglalja a spint, továbbá jóslatot tesz az antirészecskék létezésére. Dirac az elektron antirészecske-párjának, a pozitronnak a kísérleti kimutatásakor, 1933-ban kapott Nobel-díjat.

A speciális relativitáselméletben az energia és az impulzus egy négyesvektort alkot, ezért csak olyan egyenlet lehet Lorentz-kovariáns, amiben az energia és az impulzus azonos rendben, méghozzá lineárisan szerepelnek. A Schrödinger-egyenlet nem jó, mert abban az impulzus négyzete szerepel. Ha viszont a relativisztikus energia-impulzus-tömeg kifejezésből indulunk ki, akkor ezt operátorosítva az energiát és az impulzust (ill. azok operátorát) is másodrendben találnánk egyenletünkben. „Gyököt” vonhatunk azonban az egyenletből Dirac ötlete nyomán úgy, hogy két impulzusreprezentációbeli egyenletehez jutunk, ahol a fenti kifejtésnek megfelelően már minden mennyiség lineárisan szerepel. A függvény tulajdonságaikat megvizsgálva láthatnánk, hogy transzformációs tulajdonságaik olyanok, mint egymás komplex konjugáltjaié. Megduplázódik a hullámfüggvény dimenziója, mivel a „komplex konjugált hullámfüggvény” transzformációja nem vezethető le a „hullámfüggvény” egyenletéből. Ez azért van, mert a nemrelativisztikus kvantummechanikával szemben most a hullámfüggvény és komplex konjugáltjának szorzata, ami egy valószínűségsűrűség, nem skalármennyiség, hanem egy négyesáramsűrűség időszerű komponense, s így elesik egy unitaritási feltétel a kétféle hullámfüggvény között. Egy tértükrözés viszont felcseréli a kétféle spinor transzformációs tulajdonságait, ezért ha a tértükrözéseket (ld. paritás) is magában foglaló leírást alkarunk, akkor mindkét spinorra szükségünk van. A két -- kétkomponensű -- spinort egyesíteni lehet tehát egy -- négykomponensű -- bispinorba vagy Dirac-spinorba, legyen ez a hullámfüggvény.

Feynman-gráfok

A Feynman-gráfok vagy Feynman-diagramok az útintegrálok technikájában az integrál elemeivel (integrálás, propagátorok, szorzótényezők, változók) való egy-egyértelmű megfeleltetésből származtathatók, s a Lagrange-függvényben előforduló anyagi (elektron) és sugárzási (foton) mezőkkel is egy-egyértelmű szemléletes összefüggésbe hozhatók. A lényeg a következőkben összegezhető. A Lagrange-függvény minden tagja megfelel egy vertexnek, amiben annyi részecskevonal találkozik, ahány mező (ugyanaz vagy különböző) az illető tagban előfordul.

Ha két ilyen mező van, akkor ez nem igazi vertex, hiszen a bejövő mező ki is megy, azaz ez az illető mező (részecske) szabad terjedése. Ilyen tagban mindig azonos típusú részecskék fordulnak elő, különben megmaradási tétel sérülne, hiszen egy részecske spontán módon másikká alakulna külső hatás nélkül. Ilyenek a fenti szabad elektront és fotont leíró Lagrange-függvények.

A mértékszabadság elektronra való kiterjesztésekor, a kovariáns deriváltra való áttéréskor fellépő kölcsönhatási tag viszont egy foton és két elektronvonalat tartalmaz. Ez egy igazi három részecskés vertex, ami a kvantumelektrodinamika egyetlen kölcsönhatási vertexe. Itt látjuk, hogy a kölcsönhatás szorosan kötődik a sugárzási mezőhöz, vagy mértékmezőhöz (jelen esetben a fotonhoz), hiszen ennek mértékszabadságát kiterjesztve az anyagi mezőkre jön létre az anyagi mezők kölcsönhatása.

Több alapgráfból tetszőleges nagyságú összetett diagramok felépíthetők úgy, hogy két-két alapgráf egy-egy azonos típusú vonalát összekötjük, s így újabb lehetséges fizikai folyamatok jönnek létre.

Renormálás

Egy kiválasztott fizikai folyamathoz mindig tartozik egy olyan gráf, amiben nem lépnek fel a fentihez hasonló hurkok. Ez az illető folyamat fagráfja, amihez a korrekciókat a végtelen számban beilleszthető hurkok jelentik. Ezeknek a hurkoknak a hozzájárulása azonban végtelennek adódik, ellentétben azzal a várakozással, hogy minél magasabb rendű a járulék, annál kisebb korrekciót szolgáltasson. A kvantumelektrodinamika abban a szerencsés helyzetben van, hogy ezek a végtelenek beledefiniálhatók az elektron tömegébe és töltésébe, mert mindig azokkal ugyanolyan alakú kifejezésben lépnek fel, akármilyen korrekciót is számolunk. Így mondhatjuk, hogy nemcsak a korrekciók által szolgáltatott saját tömeg (ld. még klasszikus elektronsugár) és saját töltés végtelen, hanem a Lagrange-függvényben fellépő csupasz tömeg és csupasz töltés is. Azért hívjuk ezeket csupasz mennyiségeknek, mert hiányzik körülük az őket „felöltöztető” elektromágneses kölcsönhatás korrekciója, amit a magasabb rendű járulékok hurkai szolgáltatnak. Feynman a „pucér elektronról” és „fotonruhájáról” beszélt. A saját és csupasz mennyiségek együtt viszont a megfigyelhető vagy renormált töltéshez és tömeghez vezetnek, amiket kísérletileg kell meghatároznunk. A kvantumelektrodinamika ezen renormálása a véletlen - azaz a Lagrange-függvény konkrét alakjának - következménye, más térelméletekben ez nincs feltétlenül így. A renormálhatóság nagyon fontos feltétele egy térelmélet használhatóságának, azaz jóságának.

A kvantumelektrodinamika hiányosságai

Önmagában véve, saját hatókörében a kvantumelektrodinamika a legjobb létező térelmélet, egyes jóslatait a kísérletek 12 tizedesjegy pontossággal ellenőrizték. Problémái megegyeznek a standard modell problémáinak rá is vonatkozó részével:

Nem magyarázza meg az elektromos töltés kvantáltságát.

A csatolási állandó (elemi töltés) értéke az energiával növekszik. Ez nyilván nem tarthat a végtelenig, mi történik végül egy nagy energián?

Tartalomjegyzékhez Világképem <  Alfapont     

--------------------------

http://hu.wikipedia.org/wiki/Kvantum-elektrodinamika

http://hu.wikipedia.org/wiki/Dirac-egyenlet

http://www.inco.hu/inco12/kozpont/hejjas_kvantumfizika_es_tudat.pdf