Rieth József: Anyagvilág - Háttéranyag

Szimmetria

Tartalomjegyzékhez Világképem <   (Kezdetben..., Hadron-időszak)     

A szimmetria fogalma határhelyzetű a természettudományok, a művészet és a technika között, mert összekapcsolja azt a háromféle fő törekvést, amellyel az ember a világhoz, annak megértése céljából közelít. Általános, köznapi jelentésében valamiféle szabályosságra, harmóniára, tökéletességre, szépségre utal; konkrét szakterületeken precíz jelentése van.

Az ismétlődő, egybevágó elemek gyakori jelenségek a természetben. Az ember technikai tevékenységeiben is többször állít elő ilyen tulajdonságú elemeket, hogy később nagyobb rendszerekké kapcsolja össze őket.

Az építés során az egybevágó elemeknek sokféle szabályos, részben szabályos vagy rendezetlen alakzatrendszere jöhet létre. Az egybevágó elemek nagyszámú kapcsolódási kombinációjából, az így létrejövő alakzatrendszerekből (az építés és az ismeretek rendezése szempontjából is) azok a legfontosabbak, amelyek szabályosságukból eredően egyszerűen leírhatók. Az ilyen elrendezések ugyanakkor szépek is, tulajdonságuk a technikai rendszerek létrehozásakor, a struktúraépítéskor szintén értékes szempont (esztétikai illesztés a környezethez!).

A természetben található struktúráknál és a technikai alkotásoknál is gyakori az, hogy egybevágó elemek jönnek létre. Ezért a belőlük való építkezés is hasonló törvényszerűségeket követ. Az egybevágó elemekből épülő szabályos alakzatrendszerek tulajdonságait több tudományág is vizsgálja. A természetleírás és a struktúraépítés együtt formálta meg azt a fogalmat, amelynek segítségével e tulajdonságok tömören megfogalmazhatók, s ez a szimmetria.

A matematikában a szimmetria hasonlóan mint a többi tudományban illetve a művészetben, a geometriai szimmetria általánosítása illetve speciális értelmezéseként jelenik meg.

Szimmetria vagy más néven tükrözés a geometriai transzformációk (leképezések) néhány osztályának összefoglaló neve. A szimmetria legegyszerűbb megjelenési formája a díszítősor. Hétköznapi emberi tevékenységek gyakran hoznak létre ilyen mintázatokat. A szimmetria másik ismert megjelenési formáit alkotják a szabályos testek (más néven Platoni testek) és a féligszabályos testek, vagy Arkhimédeszi testek. Ezeknek lapjai is mind szabályos poligonok (sokszögek). A szabályos testeknek a csúcsalakzataik is szabályosak és egybevágók.

Talán az egyik leglátványosabb megjelenési formája a biológiai szimmetriáknak a levélállás (fillotaxis) és a tömött növényi magvak vagy pikkelyek mintázata.

Az általános szimmetriafogalomnak az alkalmazása később gyümölcsözőnek bizonyult a fizikában is. Ezzel az elméleti fizika leghatásosabb eszközévé vált. A Noether-tétel értelmében minden szimmetriához (szimmetriatranszformációval szembeni invarianciához) egy megmaradó mennyiség tartozik:

      az időbeli eltoláshoz az energiamegmaradás

      a térbeli eltoláshoz az impulzusmegmaradás

      a térbeli forgatáshoz az impulzusmomentummegmaradás

      a belső szimmetriákhoz a különféle töltésmegmaradások

A szimmetriatranszformációkat a csoportelmélet tárgyalja, ami a fizikusok által egyik leggyakrabban tanulmányozott matematikai tudományág.

A szimmetria egyik megjelenési formája, amit a kémia tanulmányoz, a kiralitás (kezesség).

Az ábrázolás-elmélet fizikai alaptétele szerint minden fizikai mennyiség a rendszer szimmetriacsoportja egyik ábrázolása szerint transzformálódik (nagyon fontos: ez egy tapasztalati törvény, mint minden fizikai alaptétel). Ezért nagyon fontos megismerni világunk szimmetriáit és szimmetriacsoportjait, mert így tudjuk eldönteni, hogy milyen fizikai mennyiségek létezhetnek. A triviális ábrázolás szerint transzformálódó mennyiségeket skalárnak hívjuk, az önábrázolás (ha van) szerint transzformálódó mennyiségeket vektornak.

A tapasztalat szerint az SO(3) (a 3 dimenziós tér elforgatásainak csoportja) például szimmetriája világunknak, azaz egyszerűen fogalmazva, ha másik irányból nézem a világot, akkor törvényei nem változnak meg. Az ehhez a szimmetriacsoporthoz tartozó vektorokat szokták a hagyományos értelemben vektoroknak nevezni.

Egy gömb bármely a középpontján áthaladó egyenesre vonatkozóan forgásszimmetriával rendelkezik. Ha kiválasztunk egy ilyen egyenest (forgástengelyt) és azzal párhuzamosan a gömböt kissé összenyomjuk és az lapult lesz, akkor a többi egyenesre vonatkozóan elveszíti a forgásszimmetriáját. Azt mondjuk, hogy ezekre vonatkozóan a forgásszimmetria sérül. Az égitestek a forgásuk miatt általában ilyen lapult gömbök, amelyek a forgástengelyükre vonatkozóan – szintén csak közelítőleg – forgásszimmetrikusak.

Gondoljunk ugyanis a Földre például aminek domborzata (hegyek, tengeri árkok) elrontják a forgásszimmetriát. Ez a sérülés mindenesetre kicsi, általában nem kell számolni vele, ha mondjuk a Föld és a Hold, vagy mesterséges égitestek Föld körüli mozgását akarjuk számolni. Általában tekinthetjük a Földet forgásszimmetrikusnak. ha viszont egy műhold közel és sokáig kering a Földhöz, Föld körüli pályáján, akkor már fontossá válnak a földfelszín egyenetlenségei, azokat figyelembe kell venni a pályakorrekciók számításakor.

A szimmetriasértés hatása sokszor így jelentkezik a fizikában. Először egy közelítő szimmetriát egzaktnak tekintve elvégezzük a számításokat, majd figyelembe vesszük a szimmetria sérülése miatti hatásokat a korrekciók kiszámítására, például perturbációszámítással. Az előző példában a Föld domborzata miatt a szimmetriasértésnek jól látható, nyilvánvaló oka volt, az anyageloszlás nem volt forgásszimmetrikus. Az ilyen szimmetriasértést explicit szimmetriasértésnek nevezzük.

Vegyünk egy másik mechanikai példát. Fogjunk be egy rudat a két vége között két satupofa közé. Ekkor ez a rendszer forgásszimmetrikus a rúd hossztengelyére vonatkozóan. Kezdjük el összenyomni a rudat hosszában,- a nyomóerő is forgásszimmetrikus, hiszen hossztengely irányú. Ahogy a nyomóerő növekszik, a rúd kicsit összenyomódik, de az egész rendszer forgásszimmetrikus marad. Ha tovább növeljük a nyomóerőt, egy ponton túl a rúd ki fog hajlani oldalirányban és a rendszer elveszíti a forgásszimmetriáját. Egy teljesen szimmetrikus elrendezés, és erők esetén tehát mégis sérült a forgásszimmetria. Az ilyen sértést spontán szimmetriasértésnek nevezzük.

Tartalomjegyzékhez Világképem < Kezdetben...     

-----------------

http://hu.wikipedia.org/wiki/Szimmetria