Rieth József: Anyagvilág - Háttérismeret

Részecskefizika

Tartalomjegyzékhez Világképem <    (Kvark-időszak, Hadron-időszak)     

A részecskefizika a fizika egyik ága, amely az anyag elemi összetevőit, sugárzást és azok kölcsönhatásait vizsgálja. Nagyenergiájú fizikának is hívják, mivel sok elemi részecske nem fordul elő normális körülmények között a természetben, hanem más részecskék nagy energiájú ütközései során kell őket kelteni, ahogy az a részecskegyorsítókban történik.

 

 

Az anyag legkisebb összetevői Bővebben: Elemi részecske

Az atommagot alkotó proton és a neutron nem elemi részecskék, hanem még kisebb részecskékből állnak. Ezek a kvarkok. Ezen kívül elemi részecskék még a leptonok, amelyek közé az elektron és a neutrínók is tartoznak. Az összes anyag kvarkokból és leptonokból áll, közöttük négyféle kölcsönhatás léphet fel, melyeket szintén részecskék közvetítenek.

Az elemi részecskék családjai Bővebben: Részecskecsaládok

Proton és neutron kvarkszerkezete 

A körülöttünk álló világot döntő részben az u és a d kvark, valamint az elektron (e-) építi fel. A proton például két u és egy d kvarkból áll, a neutron két d és egy u kvarkból. Az atommag-átalakulások egy részénél szerepe van még az elektronneutrínónak (νe) is, egy nagyon kismértékben kölcsönható anyagnak is. Ezek alkotják az elemi részecskék első családját.

Első család második család harmadik család töltés (e)
u
 
c
 
t
 
2/3
d
 
s
 
b
 
-1/3
e-
 
μ-
 
τ-
 
-1
νe
 
νμ
 
ντ
 
0

Összesen három ilyen család létezik, de a másik két részecskecsaládhoz tartozó kvarkok létrejöttéhez nagyobb energiára van szükség. A világegyetem Ősrobbanás utáni korai forró időszakában sok második és harmadik családbeli kvark volt, de a világegyetem tágulásával és hűlésével egyre kisebb energia jutott egy részecskére, így azok elbomlottak kisebb tömegű részecskékre. Ezen korai fázisban a kvarkok és gluonok forró plazmát alkottak, majd a tágulás és lehűlés közben fázisátalakulás révén kialakultak a hadronok, azaz a kvarkokat az erős kölcsönhatás „börtönbe zárta”. Jelenleg nagy gyorsítókkal vizsgálják az elmélet helyességét, a kvark-gluon plazma nagyenergiájú részecskegyorsítókban való kialakulásának körülményeit és tulajdonságait.

Kölcsönhatások Bővebben: Alapvető kölcsönhatások

A részecskék között négyféle kölcsönhatást ismerünk. Ezek egyre csökkenő erősséggel:

erős kölcsönhatás: a kvarkok között hat, a hadronokat és az atommagokat tartja össze.

elektromágneses kölcsönhatás: az elektromos töltéssel rendelkező részecskék között hat,

gyenge kölcsönhatás: az atommagok radioaktivitása ennek következménye,

gravitáció: minden, energiával rendelkező fizikai tér között hat.

Antirészecskék Bővebben: Antirészecske

Minden részecskének (az összes leptonnak, kvarknak és a kvarkokból felépülő részecskéknek) van olyan párja, amelynek az összes töltésjellegű kvantumszáma (például elektromos töltése, barionszáma és leptonszáma) ellentétes, de a tömege azonos a részecskéével. Ezeket hívjuk antirészecskéknek. Az elektron anti-párja a pozitron. Vannak olyan részecskék is, amiknek sajátmaguk az antirészecskéi (például foton, Z-bozon, semleges mezonok egy része), ezeket valódi semleges részecskéknek hívjuk.

A kvarkok és kötött állapotaik Bővebben: Erős kölcsönhatás

A kvarkokat csak kötött állapotaikban, a hadronok belsejében, közvetve figyelhetjük meg. Kétféle hadron létezik:

három kvark alkotja a legegyszerűbb barionokat (három antikvark az antibarionokat),

egy kvark és egy antikvark alkotja a legegyszerűbb mezonokat.

Barion például a proton és a neutron, mezon például a pion.

A bozonok és a fermionok Bővebben: Spin

A részecskéket spinjük (saját impulzusmomentumuk) alapján két lényegesen különböző tulajdonságú csoportba sorolhatjuk.

Az egyik csoport az egész spinű bozonoké (például mezonok, kölcsönhatást közvetítő részecskék).

A másik csoport a félegész spinű fermionoké (például kvarkok, leptonok, barionok).

Mivel a barionszám és a leptonszám megmaradó mennyiség, ezért csak antirészecskéjükkel együtt keletkezhetnek. Fermionokra érvényes a Pauli-elv.

A részecskefizika standard modellje Bővebben: Standard modell

Az elemi részecskék fizikájának jelenlegi legjobb leírását a részecskefizika standard modellje nyújtja. Ezek szerint az alapvető kölcsönhatásokat (erős, elektromágneses és gyenge; a gravitáció nincs a modellben) bozonok közvetítik, az úgynevezett „mértékbozonok”: foton, W-, W+, Z bozonok és a 8-féle gluon. Ezen kívül 12 alapvető ún. anyagi részecske (az antirészecskék és a kvarkok színeinek figyelembevétele nélkül), építi fel az anyagot. Végül az elmélet jósol egy még fel nem fedezett részecskét, a Higgs-bozont, ami tömeget ad a modell többi részecskéjének.

A kölcsönhatások elmélete bizonyos lokális szimmetriatulajdonságokból vezethető le: az ilyen elméleteket mértékelméleteknek nevezzük.

Az elmélet korlátainak kiküszöbölésére alkották meg többek között az alábbi elméleteket:

a szuperszimmetriát (SUSY), mellyel többek között lehetővé válik a három kölcsönhatás egyesítése.

a húrelméletet, mely az egyik kísérlet arra, hogy a gravitációt is belefoglalhassuk az elméletbe.

A tér kiterjesztése új dimenziókkal

A kísérleti adatokkal való egyezés keresése sok új ötlettel ajándékozta meg a részecskefizikát. Az egyik ilyen gyümölcsöző irány az általunk tapasztalatból ismert háromdimenziós tér egységes keretben való tárgyalása a tőle függetlennek látszó idővel, illetve új – nem szokványos, hanem kompakt – térdimenziók hozzáadása a fizikai leíráshoz. Az ilyen kiterjesztések általában új típusú részecskék megjelenésével járnak az elméleti jóslatokban.

Relativitáselmélet Bővebben: Speciális relativitáselmélet

A speciális relativitáselmélet a Lorentz-transzformációval kapcsolatot teremtett a „hétköznapi” euklideszi hármastér és az idő között, egyben kimondva, hogy a transzformáció szimmetriája a természetnek. A felépített új ún. négyestér (vagy téridő) matematikai leírására a keretet a Minkowski-tér biztosítja. Az idődimenzió nem lett teljesen ekvivalens a térdimenziókkal, például az idő továbbra sem tud visszafelé folyni, és a kauzalitás, a dolgok egymásutánisága sem sérülhet.

Az elméletet a kvantumechanikában érvényesítve megjósolta az antirészecskék létezését, amelyek későbbi felfedezése az elmélet nagyszerű bizonyítéka.

Szuperszimmetria Bővebben: Szuperszimmetria

A szuperszimmetria elmélete a négyes téridőt szupertérré bővíti, ami ötödik és további dimenziókként nem a négyesteret leíró valós számot, hanem Grassmann-számokat ad hozzá a leíráshoz. A szuperszimmetria az így kiterjesztett téren lehetséges transzfromációkkal szembeni szimmetriát jelenti. Jóslata szerint minden általunk ismert részecskének létezik egy – nyilván kis tömegű, mivel eddig még nem fedeztük fel őket – ún. szuperpartnere. A fermionok szuperpartnere bozon és megfordítva. A szuperszimmetrikus modellek a standard modell sok problémáját képesek megoldani, a részecskefizika egyik mai legfontosabb feladata a szuperszimmetria igazolása avagy kizárása.

Kísérleti részecskefizika

A kísérleti részecskefizika legfontosabb eszközei a gyorsítók és a detektorok. A részecskegyorsítókban a töltött részecskéknek feszültség hatására nagy mozgási energiára tesznek szert. A detektorokban az ütközések során, a világűrben stb. keletkező részecskék tulajdonságait (helyét, energiáját, lendületét, sebességét) mérik.

Tartalomjegyzékhez Világképem <  Kvark-időszak     

------------------------

http://hu.wikipedia.org/wiki/R%C3%A9szecskefizika