Rieth József: Anyagvilág - Háttérismeret

Kvantummechanika

TartalomjegyzékhezVilágképem <  (Planck-időszak, Kvark-időszak, Hadron-időszak)     

A kvantummechanika a természet, a fizikai rendszerek jelenleg érvényesnek gondolt elmélete, amelyik túllépett a klasszikus fizika fogalmain. Jóslatai a klasszikus fizikáétól főleg kis méretek, energiák és hőmérsékletek esetén különböznek. Így a kvantummechanika főleg az elemi részecskék fizikájának elmélete vagy például az olyan alacsony hőmérsékletű makrojelenségeké, mint a szuperfolyékonyság és a szupravezetés. A kvantummechanika néhány alapelvből származtatott matematikai apparátusa kísérletileg ellenőrizhető jóslatokat szolgáltat olyan jelenségekre, amikre a klasszikus mechanika és a klasszikus elektrodinamika nem képes. Ilyenek a kvantálás, a hullám-részecske kettősség, a határozatlansági elv és a kvantum-összefonódás.

A kvantum latin szó (quantum, jelentése mennyiség). Legáltalánosabban véve valami mérhetőnek az alapvető egysége. A kvantum a fizikában a legkisebb adag, amivel egy mérhető mennyiség növelhető. Az energia kvantuma például a foton, egy adott frekvenciájú hullámszerű csomag. A kvantummechanika a 20. század elején azon az alapvető feltevésen jött létre, hogy az elektromágneses sugárzás ilyen csomagokban érkezik.

A kvantumfizika és kvantumelmélet kifejezéseket gyakran a kvantummechanika szinonimájaként használjuk, máskor viszont bővebben beleértjük a kvantummechanika előtti régebbi kvantumelméleteket is, vagy amikor a kvantummechanikát egy sokkal szűkebb értelemben használjuk (a klasszikus mechanika mintájára), akkor beleértjük az olyan elméleteket például mint a kvantumtérelmélet vagy annak első kidolgozott változata a kvantum-elektrodinamika. Mi itt a szó legáltalánosabb értelmében használjuk.

Hullámfüggvények és mérés

A kvantummechanika egy rendszer pillanatnyi állapotát a hullámfüggvénnyel ábrázolja, ami a mérhető tulajdonságok – másképpen megfigyelhető mennyiségek – valószínűségi eloszlását írja le. Megfigyelhető mennyiség például az energia, térbeli helyzet (a nem relativisztikus elméletben), impulzus, impulzusmomentum stb. A kvantummechanika általában nem rendel határozott értékeket a megfigyelhető mennyiségekhez, hanem jóslatokat ad a valószínűségi eloszlásukra. Egyes eloszlások csak diszkrét értékeit engedik meg a megfigyelhető mennyiségeknek, az ilyen mennyiségeket kvantáltnak nevezzük.

A hullámfüggvény az időben változhat. Például az üres térben mozgó részecske ábrázolható egy átlagos helyzet körül nem eltűnő hullámcsomaggal. Az idő múlásával ez az átlagos pozíció eltolódhat a térben, ahogy a hullámcsomag változik, és a részecskét nagy valószínűséggel máshol fogjuk megtalálni, mint annak előtte. Másrészt vannak olyan hullámfüggvények, amelyekhez időben állandó valószínűség-eloszlás tartozik. Sok rendszer, amit a klasszikus fizika dinamikusan ír le, a kvantummechanikában ilyen statikus hullámfüggvénnyel írható le. Például a klasszikus kép szerint a nem gerjesztett atomban az elektron kering az atommag körül, míg a kvantummechanikában az elektront egy középpontos szimmetriával rendelkező valószínűségi függvény („elektronfelhő”) írja le.

Egy megfigyelhető mennyiség tényleges megmérése megváltoztatja a rendszert és a hullámfüggvényét. Közvetlenül a mérés után a hullámfüggvény teljesen kompatibilis a méréssel, azaz olyan, amelyik 100% valószínűséget ad az éppen kapott eredményre. Ez a jelenség a hullámfüggvény összeomlása. Egy adott hullámfüggvénybe való összeomlás valószínűsége függ a mérés típusától és kiszámolható a mérés előtti hullámfüggvényből. Nézzük az üres térben mozgó részecske fenti példáját. Ha megmérjük a részecske helyzetét, véletlenszerű eredményt kapunk. Általában lehetetlen megjósolni a kapott x értéket, bár valószínű, hogy a hullámcsomag centrumához – ahol a hullámfüggvény amplitúdója nagy – közeli értéket kapunk. Közvetlenül a mérés után a hullámfüggvény egy olyan hullámfüggvénybe omlik össze, ami élesen a mért x érték körül összpontosul. A részecske sebességének a mérése egy teljesen más hullámfüggvényhez vezetne.

A hullámfüggvény időbeli változása determinisztikus abban az értelemben, hogy adott időben, adott hullámfüggvényből kiindulva határozott jóslatot kapunk arra, hogy bármely későbbi időben milyen lesz a hullámfüggvény. Nem relativisztikus esetben ezt a folytonos időfüggést írja le a Schrödinger-egyenlet, amit relativisztikus esetben a Dirac-egyenlettel kell helyettesítenünk. Mérés közben a hullámfüggvény változása viszont valószínűségi, nem determinisztikus. A kvantummechanika valószínűségi jellege tehát a mérés folyamatában rejlik.

Kvantummechanikai effektusok

Mint a bevezetés is említi, több olyan jelenség van a kvantummechanikában, aminek nincs klasszikus megfelelője. Ezeket gyakran kvantumeffektusoknak hívjuk.

Az egyik kvantumeffektus bizonyos mennyiségek kvantálása. Láttuk, hogy bizonyos megfigyelhető mennyiségek a kvantummechanikában diszkrét értékeket vesznek fel, mint például az impulzusmomentum, vagy egy kötött állapot energiája vagy adott frekvenciájú elektromágneses sugárzás energiája, bár nem minden kvantummechanikában előforduló mennyiség kvantált.

Egy másik kvantumeffektus a határozatlansági elv. Bizonyos mennyiségpárok egyidejű (szimultán) mérése elvi hibahatáron kívül lehetséges csak. Ilyen pár például egy részecske helyzete és impulzusa. Hasonló reláció érvényes az energiára és az időre is olyan értelemben, hogy két egymást követő energiamérés hibája nő, ha a két mérés közötti idő csökken. Az ilyen mennyiségpárok a klasszikus fizikában egymás kanonikus konjugáltjai.

Egy másik kvantumeffektus a hullám-részecske kettősség. Erre példa az, hogy bizonyos kísérleti körülmények között az elektronok részecskeszerű (például szórás), mások között hullámszerű (például interferencia) viselkedést tanúsítanak.

Egy másik kvantumeffektus a kvantum-korreláció, vagy más néven összefonódás.

Bizonyos esetekben egy összetett rendszer hullámfüggvénye nem szeparálható az elemek független hullámfüggvényeire. Az így összefonódott részecskék klasszikus szempontból rendkívül furcsa viselkedést mutathatnak. Például az egymástól egyébként távoli részecskéken végzett helyi mérések eredményeinek korrelációi a megszokott klasszikus statisztikákkal nem egyeztethetők össze. Az ilyen jelenséget felmutató kísérletek a kvantummechanika legmélyebb bizonyítékai.

Relativisztikus kvantummechanika

Induljunk ki Heisenberg határozatlansági relációiból. Az egyik azt állítja, hogy nem lehetséges az impulzus és a helykoordináta együttes tetszőleges pontosságú mérése, a másik pedig azt, hogy nem lehetséges az energia mérése úgy kétszer egymás után, hogy a két mérés tetszőleges rövid idővel követi egymást, és a két energiamérés tetszőleges pontossággal ugyanazt az értéket adja. Az utóbbi esetben nagyon fontos tehát hangsúlyozni, hogy nem az energia és idő együttes mérésének tetszőleges pontosságáról van szó, fizikai, pontosabban kvantummechanikai értelemben ugyanis az időt nem lehet mérni, az egy külső paraméter. Amikor időmérésről beszélünk, azt mindig klasszikus newtoni, vagy speciális einsteini – ami ugyanaz – értelemben tesszük.

A helyre és időre vonatkozó határozatlansági relációban ténylegesen a sebesség lép fel, ebből származódik a klasszikus impulzus, ahol egyikre sincs semmilyen felső határ. A relativisztikus esetben viszont a sebességnek van felső határa, a fénysebesség, ezért ott az impulzusnak is van felső határa. Nagyon fontos megjegyezni, hogy az impulzusra ez a felső határ csak a határozatlansági relációban létezik, ahol az impulzust a sebességből származtatjuk. Egyébként az impulzusnak nincs felső határa, ahogy az energiának sem, amivel az impulzus négyesvektort alkot, hacsak nem a Planck-energia és a Planck-impulzus.

A határozatlansági relációban fellépő felső impulzushatár miatt viszont a koordinátamérés pontosságára abszolút alsó határ lép fel, azaz a relativisztikus kvantummechanikában a koordinátamérés elveszti értelmét. A koordinátareprezentáció helyett kizárólag az impulzusreprezentációt használhatjuk, azaz a kölcsönhatások és mérések során az energia és impulzus változásait tudjuk csak pontosan követni, implicit módon feltételezve, hogy elég hosszú ideig mérünk. A tökéletes méréshez végtelen hosszú ideig kellene mérnünk, de a klasszikus mérőeszközeinknek amúgy is van egy mérési hibája, és a mérési idő elég hosszú ahhoz, hogy az elvi hiba ezen gyakorlati hibán belül legyen.

A megtalálási valószínűségben a hullámfüggvény abszolútérték-négyzete, azaz a hullámfüggvény és komplex konjugáltjának a szorzata lép fel. A nem relativisztikus elméletben ez, a sűrűség-eloszlás, egy skalármennyiség, a relativisztikus elméletben viszont a négyes áramsűrűség időszerű komponense. A komplex konjugált viselkedése ezért a nem relativisztikus elméletben tökéletesen meghatározott az eredeti hullámfüggvény viselkedése alapján, a relativisztikus elméletben viszont a komplex konjugált önálló életre kel, önálló szabadsági fokokká válik. Matematikailag ez azt jelenti, hogy a nem relativisztikus elmélet kétkomponensű komplex spinorjai helyett négykomponensű Dirac-spinorok tudják leírni a részecskéket, s fizikailag a részecskék száma megduplázódik, mert megjelenik (majdnem) mindegyiknek az antirészecskéje is. Az antirészecskék létezése a Lorentz-invariancia egyenes következménye. Másrészt az antirészecskék kísérleti megfigyelése a Lorentz-invariancia és a speciális relativitáselmélet egyik kísérleti bizonyítéka.

Kvantumtérelmélet

A relativisztikus kvantummechanika Dirac első értelmezésében állandóan jelenlevő végtelen sok részecskét (Dirac-tenger) követelt meg az antirészecskék leírására, amelyek betöltötték az összes lehetséges alsó energiájú állapotot. Ez az értelmezés még fermionok esetén is kicsit kényelmetlen, bozonok esetén viszont, ahol egy állapotban akárhány részecske lehet, értelmetlen. Olyan elméletre volt szükség, ami le tudja írni a részecskék számának változását. A megoldást a második kvantálás, az eddig függvény vagy matematikai vektor hullámfüggvény operátorosítása jelentette. A hullámfüggvény részecskekeltő és eltüntető operátorok lineáris kombinációjává vált, s ezek az operátorok a részecskeszám-téren (Fok-tér) hatottak. Az így megszületett kvantumtérelmélet ezen leírási módszerét Fok-reprezentációnak nevezzük a kezdeményező Vlagyimir Alexandrovics Fok orosz fizikus, matematikus után.

Az első ilyen elmélet, a kvantum-elektrodinamika, az elektromágneses kölcsönhatás kvantumtérelméletének sikere ösztönzőleg hatott a kvantumtérelmélet további általánosításai irányában. A téridő szimmetriái után az ún. belső szimmetriák felfedezése, amiknek legrégebben ismert példája az elektrodinamika mértékinvarianciája vezetett a mértéktérelméletek kifejlesztéséhez. Ezek igen gyümölcsözőnek bizonyultak az anyag olyan kölcsönhatásainak, mint az elektromágneses, gyenge és erős kölcsönhatás kvantumtérelméleti leírásában.

TartalomjegyzékhezVilágképem <  Planck-időszak     

----------------------

http://hu.wikipedia.org/wiki/Kvantummechanika

http://hu.wikipedia.org/wiki/Kvantum

http://hu.wikipedia.org/wiki/Kvantumt%C3%A9relm%C3%A9let